Molecular Therapy


Cell therapy (also called cellular therapy, cell transplantation, or cytotherapy) is a therapy in which viable cells are injected, grafted or implanted into a patient in order to effectuate a medicinal effect, for example, by transplanting T-cells capable of fighting cancer cells via cell-mediated immunity in the course of immunotherapy, or grafting stem cells to regenerate diseased tissues.

Cell therapy originated in the nineteenth century when scientists experimented by injecting animal material in an attempt to prevent and treat illness. Although such attempts produced no positive benefit, further research found in the mid twentieth century that human cells could be used to help prevent the human body rejecting transplanted organs, leading in time to successful bone marrow transplantation as has become common practice in treatment for patients that have compromised bone marrow after disease, infection, radiation or chemotherapy. In recent decades, however, stem cell and cell transplantation has gained significant interest by researchers as a potential new therapeutic strategy for a wide range of diseases, in particular for degenerative and immunogenic pathologies.

Cell therapy strategies

Allogeneic: In allogeneic cell therapy the donor is a different person to the recipient of the cells. In pharmaceutical manufacturing, the allogenic methodology is promising because unmatched allogenic therapies can form the basis of "off the shelf" products. There is research interest in attempting to develop such products to treat conditions including Crohn's disease and a variety of vascular conditions.

Autologous: In autologous cell therapy, cells are transplanted that are derived from the patients own tissues. Multiple clinical studies are ongoing that obtain stromal cells from bone-marrow, adipose tissue, or peripheral blood to be transplanted at sites of injury or stress; which is being actively explored for e.g. cartilage and muscle repair. It could also involve the isolation of matured cells from diseased tissues, to be later re-implanted at the same or neighboring tissues; a strategy being assessed in clinical trials for e.g. the spine in preventing disc reherniation or adjacent disc disease.

Types of cells

Human embryonic stem cells: Research into human embryonic stem cells is controversial, and regulation varies from country to country, with some countries banning it outright. Nevertheless, these cells are being investigated as the basis for a number of therapeutic applications, including possible treatments for diabetes and Parkinson's disease.

Neural stem cell therapy: MSCs are immunomodulatory, multipotent and fast proliferating and these unique capabilities mean they can be used for a wide range of treatments including immune-modulatory therapy, bone and cartilage regeneration, myocardium regeneration and the treatment of Hurler syndrome, a skeletal and neurological disorder.

Hematopoietic stem cell transplantation: Hematopoietic stem cells (HSCs), derived from bone marrow or blood, are cells with the abilities to self-renew and to differentiate into all types of blood cells, especially those involved in the human immune system. Thus, they can be used to treat blood and immune disorders. Since human bone marrow grafting was first published in 1957, there have been significant advancements in HSCs therapy.